首页 | 小学 | 初中 | 高中 | 作文 | 英语 | 幼教 | 综合 | 早知道 | 范文大全 |
高考 当前位置:唯才网 > 高中 > 高考 > 正文 唯才网手机站

高中数学必修3教学进度表

时间:2017-02-25 来源:唯才教育网 本文已影响

篇一:数学高一下学期教学进度表 必修2和必修3

一年级 数学 学科

2011-2012学年下学期教学进度计划表

备课组教师:王国学、李宗文、卢柯、刘文 执笔:王国学

说明:

1进度表中已经算上了补课的两节课,包含了月考、中段考、单元测试和习题课、练习课的时间,请大家按照教学进度表执行,必要时压缩讲练习的时间,不要滞后,以便为期末复习预留好时间,以防完不成进度。 2 周测的电子档(含答案)放在03数学/周测中。

3 每一次的审题人即为下次的命题人,接到审题的消息后,也即接到了命题的提醒,请勿忘记。 4 后附:单元测验、模块测试、期末复习命题安排表。

1

2

3

4

单元测验、模块测试、期末复习命题安排

5

篇二:高一数学(必修3、4)教学工作计划

高一数学(必修3、必修4)教学工作计划

教者:乔拥华 班级:艺教一(2)(3)班

由于初中的基础参差不齐,班级学生的整体水平不高;部分学生学习习惯不好,很多学生不能正确评价自己,这给教学工作带来了一定的难度,为把本学期教学工作做好,制定如下教学工作计划。

一、指导思想:

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力,以及分析和解决问题的能力、数学表达和交流的能力、发展独立获取数学知识的能力。

3、发展数学应用意识和创新意识,提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。二、教材特点:

我们所使用的(转 自 于:wWW.Hn1C.cOM 唯才教育 网:高中数学必修3教学进度表)教材是北师大版《普通高中课程标准实验教科书·数学》,本期教学内容:数学必修3、必修4。

它在坚持我国数学教育优良传统的前提下,认真处理继承、借签、发展、创新之间的关系,具体有如下特点:

1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习激情。

2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3.“科学性”与“思想性”:通过不同数学内容的联系与启发,

1

强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维能力,培育理性精神。

4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。 三、 教法分析:

1、选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,以达到培养其兴趣的目的。

2、通过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改进学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。 四、教学措施:

1、激发学生的学习兴趣。通过数学活动、小故事等,树立学生的学习信心,积极发挥学生的主观能动性。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强复习检查工作;抓住典型例题的分析,讲清解题的关键 和基本方法,注重提高学生分析问题的能力。

4、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。重视数学应用意识及应用能力的培养。

教学进度安排

2

3

篇三:第一学期计划高中数学必修一和必修三

高一数学第一学期教学工作计划

(2013-2014学年度)

太原市第五十九中学校

2013.09

高一数学第一学期教学工作计划

2013.9-2013.1

一、学情分析

高一131班全班50人,男生20人,女生30人,高一132 班全班 48 人,男生23人,女生 25人。刚进校在军训的时候接触过学生和开学一周前进行了初高中衔接教育。从接触的几天中发现高一学生情况相当一部分学生还没有真正树立良好的学习习惯和自觉性意识,部分学生自我控制能力不强,计算能力较弱,书写和表达能力较差,解题过程逻辑性不强,分析、解决问题的能力有待进一步加强。同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些内容。因此在教学时间上可能仍然吃紧。由于学生人数多,数学基础的差异程度加大,为教学的因材施教增加了难度。另一方面,透过中考成绩可知,有很多学生底子薄弱,基础知识掌握的很不牢固。

二、指导思想

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。

三、教材分析

本学期的数学教学内容是人教A版《普通高中课程标准试验教科书数学(必修1、3)》,必修一包括集合与函数的概念、基本初等函数(I)、函数的应用;必修三包括算法初步、统计、概率共六章内容。

必修一

第一章集合

集合是近代数学中的一个重要概念,集合概念及其基本理论又是近代数学的一个重要的基础,它不仅与高中数学的许多内容有着联系,而且已经渗透到自然科学的众多领域,应用十分广泛。中学数学所研究的各种对象都可以看作集合或集合中的元素,用集合语言可以简明地表述数学概念,准确、简捷地进行数学推理.本章内容以集合的含义与表示、集合的基本关系、集合的基本运算为逻辑链条统领全章,这种安排与以往的教材的处理有很大的区别.例如,集合的基本关系,是将集合的包含和相等关系放在一起,并给出子集的概念;集合的基本运算,是将集合的交、并、补放在这一节,并给出全集的概念,这样安排给学生展现出

知识间的联系,便于学生学习.

教学目标

⑴了解集合的含义,明确元素与集合的“属于”关系.掌握描写某些数集的专用符号.

⑵理解集合的表示法,能用集合语言对事物进行准确,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题.

⑶理解集合之间包含与相等的含义,能识别给定集合的子集.培养分析、比较、归纳的逻辑思维能力.

⑷了解全集与空集的含义.

⑸理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集. ⑹理解在给定集合中,一个子集的补集的含义,会求给定子集的补集. ⑺能使用Venn图表达集合的关系及运算.

教学重点

(1)了解集合的含义与表示.

(2)理解集合间的包含与相等含义,子集与真子集的概念.

(3)理解交集与并集、全集与补集的含义.

教学难点

(1)运用集合的两种常用表示法—列举法与描述法正确表示一些简单的集合.(集合法的恰当选择)

(2)属于关系与包含关系的区别.

(3)交集与并集的概念的理解,交集与并集的符号之间的区别与联系.

第二章基本初等函数(1)

20世纪初,在英国数学家贝利和德国数学家克莱因等人的大力倡导和推动下,函数进入了中学数学。克莱因提出了一个重要的思想——以函数概念和思想统一数学教育的内容,他认为:“函数概念,应该成为数学教育的灵魂。以函数概念为中心,将全部数学教材集中在它周围,进行充分地综合。”在高中课程中,函数与方程、数列、不等式、线性规划、算法、导数及其应用,包括概率统计中的随机变量等,以及选修系列3、4中的大部分专题内容,都与函数有着密切的联系。用函数(映射)的思想去理解这些内容,是非常重要的一个出发点。反过来,

通过这些内容的学习,可以加深对于函数思想的认识。实际上,在整个高中数学课程中,都需要不断地体会、理解“函数思想”给我们带来的“好处”。函数是贯穿中学数学的核心内容,本章继第一章学习完函数概念和基本性质后,较为系统地研究最重要的两个基本初等函数:指数函数和对数函数.通过这些函数的研究,使学生进一步认识到函数是刻画现实世界变化规律的重要模型,是一种通过某一事物的变化信息可推知另一事物信息的对应关系的数学模型.并要求结合实际问题,感受运用函数概念建立模型的过程与方法.

教学目标

⑴理解有理指数幂的含义,了解无理指数幂及实数指数幂的意义,掌握幂的运算. ⑵了解指数函数模型的实际背景.

⑶理解指数函数的概念和意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的单调性和特殊点.

⑷在解决实际问题的过程中,体会指数函数是一类重要的函数模型.

⑸理解对数的概念及其性质,知道能用换底公式将一般对数转化为自然对数或常用对数.

⑹了解对数的发展历史以及简化运算的作用.

⑺了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型.

⑻能够画出具体的对数函数的图象,了解对数函数的单调性与特殊点.

xy?a⑼了解反函数的定义,知道指数函数与对数函数y?logax(a?0,a?1)互为

反函数.

⑽掌握幂函数、指数函数和对数函数的变化特点,会区别它们变化的速度的不同. 教学重点

(1)理解函数的模型化思想,用集合与对应的语言来刻画函数.

(2)理解函数的概念,函数的表示法.

(3)理解函数单调性、奇偶性的概念,学会判断和证明函数的单调性、奇偶性.

(4)掌握用函数的单调性求一些函数的最大值

教学难点

(1)对抽象符号f(x)的理解,分段函数的表示及图像.

(2)应用定义证明单调性.

(3)利用数学本质正确判断函数的奇偶性.

第三章函数的应用

函数是高中数学的起始课程,函数的重要性主要表现在两个方面:一是函数思想的价值;二是函数的应用价值.从两个方面学习函数的应用,一是函数与其它数学内容的联系:再一个是函数与实际的联系.力图在理念、方法和能力上为高中阶段的学习奠定基础.

教学目标

⑴结合二次函数的图象,判断一元二次方程根的存在性及根的个数,从而了解函数的零点与方程根的联系.

⑵根据具体函数的图象,能够借助计算器用二分法求相应方程的近似解,了解二分法是求方程近似解的常用方法.

⑶能利用计算工具,比较指数函数、对数函数以及幂函数间的增长差异;结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义.

教学重点

(1)函数的零点与方程根之间的联系,初步形成用函数的观点处理问题的意识

(2)通过“二分法”求方程的近似解.

(3)将实际问题转化为函数模型,比较常数函数、一次函数、指数函数、对数函数模型的增长差异,结合实例体会直线上升、指数爆炸、对数增长等不同函数类型增长的含义。

教学难点(1)函数与方程的关系、函数与方程思想的渗透.

(2)怎么选择数学模型分析解决实际问题。

必修三

第一章: 算法的初步知识

在本章中,学生将在义务教育阶段初步感受算法思想的基础上,结合对具体数学实例的分析,体验程序框图在解决问题中的作用;通过模仿、操作、探索,学习设计程序框图表达解决问题的过程;体会算法的基本思想以及算法的重要性和有效性,发展有条理的思考与表达的能力,提高逻辑思维能力.

教学目标: 过对解决具体问题过程与步骤的分析(如二元一次方程组求解等问