首页 | 小学 | 初中 | 高中 | 作文 | 英语 | 幼教 | 综合 | 早知道 | 范文大全 |
初三数学 当前位置:唯才网 > 初中 > 初三 > 初三数学 > 正文 唯才网手机站

初三数学校本课程教案

时间:2016-11-21 来源:唯才教育网 本文已影响

篇一:初三数学校本课程教案-生活中的数学

校本课程3生活中的数学(储蓄、保险与纳税) 储蓄、保险、纳税是最常见的有关理财方面的数学问题,几乎人人都会遇到,因此,我们在这一讲举例介绍有关这方面的知识,以增强理财的自我保护意识和处理简单财务问题的数学能力.

1.储蓄

银行对存款人付给利息,这叫储蓄.存入的钱叫本金.一定存期(年、月或日)内的利息对本金的比叫利率.本金加上利息叫本利和.

利息=本金×利率×存期,

本利和=本金×(1+利率经×存期).

如果用p,r,n,i,s分别表示本金、利率、存期、利息与本利和,那么有

i=prn,s=p(1+rn).

例1 设年利率为0.0171,某人存入银行2000元,3年后得到利息多少元?本利和为多少元?

解 i=2000×0.0171×3=102.6(元).

s=2000×(1+0.0171×3)=2102.6(元).

答 某人得到利息102.6元,本利和为2102.6元.

以上计算利息的方法叫单利法,单利法的特点是无论存款多少年,利息都不加入本金.相对地,如果存款年限较长,约定在每年的某月把利息加入本金,这就是复利法,即利息再生利息.目前我国银行存款多数实行的是单利法.不过规定存款的年限越长利率也越高.例如,1998年3月我国银行公布的定期储蓄人民币的年利率如表22.1所示.

用复利法计算本利和,如果设本金是p元,年利率是r,存期是n年,那么若第1年到第n年的本利和分别是s1,s2,…,sn,则s1=p(1+r),

s2=s1(1+r)=p(1+r)(1+r)=p(1+r)2,

s3=s2(1+r)=p(1+r)2(1+r)=p(1+r)3,

……,sn=p(1+r)n.

例2 小李有20000元,想存入银行储蓄5年,可有几种储蓄方案,哪种方案获利最多?

解 按表22.1的利率计算.

(1)连续存五个1年期,则5年期满的本利和为

20000(1+0.0522)5≈25794(元).

(2)先存一个2年期,再连续存三个1年期,则5年后本利和为

20000(1+0.0558×2)·(1+0.0522)3≈25898(元).

(3)先连续存二个2年期,再存一个1年期,则5年后本利和为

20000(1+0.0558×2)2·(1+0.0552)≈26003(元).

(4)先存一个3年期,再转存一个2年期,则5年后的本利和为

20000(1+0.0621×3)·(1+0.0558×2)≈26374(元).

(5)先存一个3年期,然后再连续存二个1年期,则5年后本利和为

20000(1+0.0621×3)·(1+0.0522)2≈26268(元).

(6)存一个5年期,则到期后本利和为

20000(1+0.0666×5)≈26660(元).

显然,第六种方案,获利最多,可见国家所规定的年利率已经充分考虑了你可能选择的存款方案,利率是合理的.

2.保险

保险是现代社会必不可少的一种生活、生命和财产保护的金融事业.例如,火灾保险就是由于火灾所引起损失的保险,人寿保险是由于人身意外伤害或养老的保险,等等.下面举两个简单的实例.例3 假设一个小城镇过去10年中,发生火灾情况如表22.2所示.

试问:(1)设想平均每年在1000家中烧掉几家?

(2)如果保户投保30万元的火灾保险,最低限度要交多少保险费保险公司才不亏本?

解 (1)因为

1+0+1+2+0+2+1+2+0+2=11(家),

365+371+385+395+412+418+430+435+440+445=4096(家).11÷4096≈0.0026.

(2)300000×0.0026=780(元).

答(1)每年在1000家中,大约烧掉2.6家.

(2)投保30万元的保险费,至少需交780元的保险费.

例4 财产保险是常见的保险.假定A种财产保险是每投保1000元财产,要交3元保险费,保险期为1年,期满后不退保险费,续保需重新交费.B种财产保险是按储蓄方式,每1000元财产保险交储蓄金25元,保险一年.期满后不论是否得到赔款均全额退还储蓄金,以利息作为保险费.今有兄弟二人,哥哥投保8万元A种保险一年,弟弟投保8万元B种保险一年.试问兄弟二人谁投的保险更合算些?(假定定期存款1年期利率为5.22%)

解 哥哥投保8万元A种财产保险,需交保险费

80000÷1000×3=80×3=240(元).

弟弟投保8万元B种财产保险,按每1000元交25元保险储蓄金算,共交

80000÷1000×25=2000(元),

而2000元一年的利息为

2000×0.0522=104.4(元).

兄弟二人相比较,弟弟少花了保险费约

240-104.4=135.60(元).

因此,弟弟投的保险更合算些.

篇二:初一数学校本课程教案

《义务教育校本课程开发》 初一数学校本课程教案

建立一元一次方程的模型解决实际问题

教学内容:建立一元一次方程的模型解决实际问题 教学目标: 1、知识与技能:

运用一元一次方程解决实际生活中的问题,进一步体会“建模”的思想方法。2、过程与方法:

(1)通过数学活动使学生进一步体会一元一次方程和实际问题的关系,通过分析问题中的数量关系,进行预测、判断。

(2)运用已学过的数学知识进行市场调查,体会数学知识在社会活动中的应用,提高应用知识的能力和社会实践能力。 3、情感、态度、价值观:

通过数学活动,激发学生学习数学的兴趣,增强自信心;进一步发展学生合作交流的意识和能力;体会数学和现实的联系;培养学生求真的科学态度。 重、难点和关键:

1、重点:经历探索具体情境中的数量关系,体会一元一次方程与实际问题之间的数量关系,会用方程解决实际问题。

2、难点:经历探索具体情境中的数量关系,体会一元一次方程与实际问题之间的数量关系,会用方程解决实际问题。

3、关键:明确问题中的已知量与未知量的关系,寻找等量关系。 教具准备:

投影仪,每人一根质地均匀的直尺,一些相同的棋子和一个支架。 教学过程:

教师组织学生按四人小组进行合作学习,对数学活动中的三个问题展开讨论,探究解决问题的方法,然后各小组派代表发表解法。 一、活动1

一种商品售价为2.2元/件,如果买100件以上,超过100件部分的售价为2元/件,某人买这种商品共花了n元,讨论下面的问题: (1)这个人买了这种商品多少件?(注意对n的大小要有所考虑) (2)如果这个人买这种商品的件数恰是0.48n,那么n的值是多少?

分析:(1)根据以上规定,如果买100件,需要花220元,当n?220时,这个人买了这种商品种商品的件数为(100+

n?202

n

2.2

n?220

25n11

件(即

511

n

),当n

n?202

?220

时,这人买了这

5n11

)件,即件

?0.48n

(2)这个人买这种商品的件数恰是0.48n,即

?0.48n,显然方程

?0.48n

无解。解另一个方程得n=500。

二、活动2

根据国家统计局资料报告,2006年我国农村居民人均纯收入3587元,比上一年增长10.2%,扣除价格因素,实际增长7.4%

教师指出:你理解资料中有关数据的含义吗?如果不明白,请通过查阅资料或与同学探讨,弄懂它们。然后根据上面的数据,试用一元一次方程求解:

(1)2005年我国农村居民人均纯收入(精确到1元) (2)扣除价格因素,2006年与2005年相比,我国农村居民人均纯收入实际增长量(精确到1元)

由学生分组合作解答:

(1)设:2005年我国农村居民人均纯收入为x元

则:(1+10.2%)x=3587 解这个方程,得:x?3255

因此2005年我国农村居民人均纯收入为3255元。

(2) 因为2006年与2005年相比,2006年我国农村居民人均纯收入实际增长量=2005农村居民人均纯收入?实际增长率

即:3255三、活动3

布置学生运用活动前的准备的一根质地均匀的直尺,一些相同的

?7.4%=240.87?241

(元)

棋子和一个支架,分组进行如下实验:

1、将直尺的中点置于支点上,使直尺左右平衡。 2、在尺子两端各放一枚棋子,这时尺子还是保持平衡。 3、在直尺的一端再加一枚棋子,移动支点的位置,使两边平衡,然后记下支点到两端的距离a和b(不妨设较长的一边为a)

4、在有两枚棋子的一端再加一枚棋子,移动支点的位置,使两边平衡,再记下支点到两端的距离a和b(转 自 于:wWW.Hn1C.cOM 唯才教育 网:初三数学校本课程教案)

棋子多的一端继续加棋子,且重复以上操作,并做好如下记录:

根据记录下的a和b的值,探索a和b的关系。

根据实验得出的a和b的关系,猜想,当第n次实验时,a和b的关系会如何?(a=nb)

由学生合作探讨:如果直尺一端放一枚棋子 ,另一端放n枚棋子,支点应在直尺的哪个位置?

解:设:支点离放n枚棋子的一端距离是x ,根据实验所得结论可

知,支点离一枚棋子的一端距离是nx 则:x+nx=L 解方程得:x?

L1?n

四、小结:本节课主要是通过三个活动让学生以小组的形式探讨,并对各小组的结果进行评比,教师将评比的结果公布,便于学生找出差距和方法,为今后的探究课做铺垫。 五、布置作业:

1、了解实际生活中的类似于活动1的问题,并举出实例。 2、从报刊、图书、网络中收集数据,分析其中的等量关系,编出问题,看看能否建立一元一次方程模型解决其中的未知量。

篇三:初三数学校本课程教案-中外著名数学家

校本课程4 中外著名数学家

1、韦达(1540-1603),法国数学家。

年青时学习法律当过律师,后从事政治活动,当过议会议员,在西班牙的战争中曾为政府破译敌军密码。韦达还致力于数学研究,第一个有意识地和系统地使用字母来表示已知数、未知数及其乘幂,带来了代数理论研究的重大进步。韦达讨论了方程根的多种有理变换,发现了方程根与分数的关系,韦达在欧洲被尊称为“代数学之父”。1579年,韦达出版《应用于三角形的数学定律》

2、帕斯卡(1623──1662年)是法国数学家、物理学家和哲学家.

16岁的时候就发现了著名的“帕斯卡定理”,即“圆锥曲线内接六边形的三组对边的交点共线”,对射影几何学作出了重要贡献.19岁时,发明了一种能做加法和减法运算的计算器,这是世界上第一台机械式的计算机.他对连续不可分量、微分三角形、面积和重心等问题的深入研究,对微积分学的建立起到了积极的作用.帕斯卡对数学的最大贡献是创立概率论,为了解决概率论和组合分析方面的问题,帕斯卡广泛应用了算术三角形(即二项式定理系数表,西方称帕斯卡三角,我国称贾宪三角或杨辉三角),并深入研究了二项展开式的系数规律以及这个三角形的构造及其许多有趣的性质。帕斯卡在物理学方面提出了重要的“帕斯卡定律”。他所著《思想录》和《致乡人书》对法国散文的发展产生了重要的影响。

3、在数学史上,很难再找到如此年轻而如此有创见的数学家。他就是出生在法国的伽罗华(1811——1832)

伽罗华才华横溢,思维敏捷,十七岁时就写了一篇关于《五次方程代数解法》这个世界数学难题的论文,最先提出了近代数学的一个基本概念——“群”。可是这篇论文被法国科学院一位目空一切的数学家丢失了。次年,他又写了几篇数学论文送交法国科学院,不料主审人因车祸去世,论文也不知所踪。再过两年,他被近把自己的研究再次写成简述,寄往法国科学,他去信尖锐地提醒权威们:“第一,不要因为我叫伽罗化,第二,不要因为我是大学生,”而“预先决定我对这个问题无能为力。”在这封咄咄逼人的书信面前,有两位数学家不得不宣读了他的研究简述,但随即又以“完全不能理解”予以否定,其实,他们并没有读懂伽罗华的论文。

伽罗华二十一岁那年死于决斗。临死前他对守在旁边的弟弟说:“不要忘了我,因为命运不让我活到祖国知道我的名字的时候。”在决斗前夜,他给友人写了著名的“科学遗嘱”,其中充满自信地说:“我一行中不只一次敢于提出我没有把握的命题,我期待着将来总会有人认识到:解开这个谜对雅可比和高斯是有好处的。”

他的预言成为现实,那是在三十八年他的六十页厚的论文终于出版的时候,从此,他被认为“群论”的奠基 人。

4、刘 徽

刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产.

《九章算术》约成书于东汉之初,共有246个问题的解法.在许

多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根.在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=3.14的结果.刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作.

《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目.

刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人.

刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富.

5、贾 宪

贾宪,中国古代北宋时期杰出的数学家。曾撰写的《黄帝九章算法细草》(九卷)和《算法斆古集》(二卷)(斆xiào,意:数导)均已失传。

他的主要贡献是创造了"贾宪三角"和增乘开方法,增乘开方法即求高次幂的正根法。目前中学数学中的混合除法,其原理和程序均与此相仿,增乘开方法比传统的方法整齐简捷、又更程序化,所以在开高次方时,尤其显出它的优越性,这个方法的提出要比欧洲数学家霍纳的结论早七百多年。

6、秦九韶

秦九韶(约1202--1261),字道古,四川安岳人。先后在湖北,安徽,江苏,浙江等地做官,1261年左右被贬至梅州,(今广东梅县),不久死于任所。他与李冶,杨辉,朱世杰并称宋元数学四大家。早年在杭州“访习于太史,又尝从隐君子受数学”,1247年写成著名的《数书九章》。《数书九章》全书凡18卷,81题,分为九大类。其最重要的数学成就----“大衍总数术”(一次同余组解法)与“正负开方术"(高次方程数值解法),使这部宋代算经在中世纪世界数学史上占有突出的地位。

7、李冶

李冶(1192----1279),原名李治,号敬斋,金代真定栾城人,曾任钧州(今河南禹县)知事,1232年钧州被蒙古军所破,遂隐居治学,被元世祖忽必烈聘为翰林学士,仅一年,便辞官回乡。1248年撰成《测圆海镜》,其主要目的是说明用天元术列方程的方法。“天元术”与现代代数中的列方程法相类似,“立天元一为某某”,相当于“设

x为某某“,可以说是符号代数的尝试。李冶还有另一步数学著作《益古演段》(1259)也是讲解天元术的。

8、朱世杰

朱世杰(1300前后),字汉卿,号松庭,寓居燕山(今北京附近),“以数学名家周游湖海二十余年”,“踵门而学者云集”(莫若、祖颐:《四元玉鉴》后序)。朱世杰数学代表作有《算学启蒙》(1299)和《四元玉鉴》(1303)。《算术启蒙》是一部通俗数学名著,曾流传海外,影响了朝鲜、日本数学的发展。《四元玉鉴》则是中国宋元数学高峰的又一个标志,其中最杰出的数学创造有“四元术”(多元高次方程列式与消元解法)、“垛积术”(高阶等差数列求和)与“招差术”(高次内插法).

9、祖冲之

祖冲之(公元429~500年)祖籍是现今河北省涞源县,他是南北朝时代的一位杰出科学家。他不仅是一位数学家,同时还通晓天文历法、机械制造、音乐等领域,并且是一位天文学家。

祖冲之在数学方面的主要成就是关于圆周率的计算,他算出的圆周率为3.1415926<π<3.1415927,这一结果的重要意义在于指出误差的范围,是当时世界最杰出的成就。祖冲之确定了两个形式的π值,约率355/173(≈3.1415926)密率22/7(≈3.14),这两个数都是π的渐近分数。