首页 | 小学 | 初中 | 高中 | 作文 | 英语 | 幼教 | 综合 | 早知道 | 范文大全 |
高考 当前位置:唯才网 > 高中 > 高考 > 正文 唯才网手机站

教师资格证高中数学试讲教案

时间:2016-06-15 来源:唯才教育网 本文已影响

篇一:教师资格证试讲高中数学教案一

教案一

(人教版必修一 第一单元 课时1:集合的含义与表示)

一、题目:集合的含义与表示

二、教学时间:45分钟

三、授课人数:

四、课时:1课时

五、课型:

六、教学目标:

l.知识与技能

(1)通过实例,了解集合的含义,体会元素与集合的属于关系;

(2)知道常用数集及其专用记号;

(3)了解集合中元素的确定性.互异性.无序性;

(4)会用集合语言表示有关数学对象;

(5)培养学生抽象概括的能力.

2. 过程与方法

(1)让学生经历从集合实例中抽象概括出集合共同特征的过程,感知集合的含义.

(2)让学生归纳整理本节所学知识.

3. 情感.态度与价值观

使学生感受到学习集合的必要性,增强学习的积极性.

七、教学重点.难点:

重点:集合的含义与表示方法.

难点:表示法的恰当选择.

八、学法与教学用具:

1. 学法:学生通过阅读教材,自主学习.思考.交流.讨论和概括,从而更好地完成本节课的教学目标.

2. 教学用具:投影仪.

九、教学思路:

(一)创设情景,揭示课题

1.教师首先提出问题:在初中,我们已经接触过一些集合,你能举出一些集合的例子吗?

引导学生回忆.举例和互相交流. 与此同时,教师对学生的活动给予评价.

2. 接着教师指出:那么,集合的含义是什么呢?这就是我们这一堂课所要学习

的内容.

(二)研探新知

1.教师利用多媒体设备向学生投影出下面9个实例:

(1)1—20以内的所有质数;

(2)我国古代的四大发明;

(3)所有的安理会常任理事国;

(4)所有的正方形;

(5)海南省在2004年9月之前建成的所有立交桥;

(6)到一个角的两边距离相等的所有的点

(7)方程的所有实数根;

(8)不等式x?3?0的所有解;

(9)国兴中学2004年9月入学的高一学生的全体.

2.教师组织学生分组讨论:这9个实例的共同特征是什么?

3.每个小组选出——位同学发表本组的讨论结果,在此基础上,师生共同概括出9个实例的特征,并给出集合的含义.

一般地,指定的某些对象的全体称为集合(简称为集).集合中的每个对象叫作这个集合的元素.

4.教师指出:集合常用大写字母A,B,C,D,?表示,元素常用小写字母a,b,c,d?表示.

(三)质疑答辩,排难解惑,发展思维

1.教师引导学生阅读教材中的相关内容,思考:集合中元素有什么特点?并注意个别辅导,解答学生疑难.使学生明确集合元素的三大特性,即:确定性.互异性和无序性.只要构成两个集合的元素是一样的,我们就称这两个集合相等.

2.教师组织引导学生思考以下问题:

判断以下元素的全体是否组成集合,并说明理由:

(1)大于3小于11的偶数;

(2)我国的小河流.

让学生充分发表自己的建解.

3. 让学生自己举出一些能够构成集合的例子以及不能构成集合的例子,并说明理由.教师对学生的学习活动给予及时的评价.

4.教师提出问题,让学生思考

(1)如果用A表示高—(3)班全体学生组成的集合,用a表示高一(3)班的一位同学,b是高一(4)班的一位同学,那么a,b与集合A分别有什么关系?由此引导学生得出元素与集合的关系有两种:属于和不属于.

如果a是集合A的元素,就说a属于集合A,记作a?A.

如果a不是集合A的元素,就说a不属于集合A,记作a?A.

(2)如果用A表示“所有的安理会常任理事国”组成的集合,则中国.日本与集合A的关系分别是什么?请用数学符号分别表示.

(3)让学生完成教材第6页练习第1题.

5.教师引导学生回忆数集扩充过程,然后阅读教材中的相交内容,写出常用数集的记号.并让学生完成习题1.1A组第1题.

6.教师引导学生阅读教材中的相关内容,并思考.讨论下列问题:

(1)要表示一个集合共有几种方式?

(2)试比较自然语言.列举法和描述法在表示集合时,各自有什么特点?适用的对象是什么?

(3)如何根据问题选择适当的集合表示法?

使学生弄清楚三种表示方式的优缺点和体会它们存在的必要性和适用对象。

(四)巩固深化,反馈矫正

教师投影学习:

(1)用自然语言描述集合{1,3,5,7,9};

(2)用例举法表示集合A?{x?N|1?x?8}

(3)试选择适当的方法表示下列集合:教材第6页练习第2题.

(五)归纳整理,整体认识

在师生互动中,让学生了解或体会下例问题:

1.本节课我们学习过哪些知识内容?

2.你认为学习集合有什么意义?

3.选择集合的表示法时应注意些什么?

(六)布置作业

1.课后书面作业:第13页习题1.1A组第4题.

2. 元素与集合的关系有多少种?如何表示?类似地集合与集合间的关系又有多少种呢?如何表示?

篇二:教师资格证试讲高中数学教案四

教案四

(人教版必修一 第一单元 课时4:函数的概念)

一、题目:函数的概念

二、教学时间:45分钟

三、授课人数:

四、课时:1课时

五、课型:

六、教学目标:

1. 知识与技能:

函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

2. 过程与方法:

(1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

(2)了解构成函数的要素;

(3)会求一些简单函数的定义域和值域;

(4)能够正确使用“区间”的符号表示某些函数的定义域;

3. 情态与价值:

使学生感受到学习函数的必要性的重要性,激发学习的积极性。

七、教学重点、难点:

重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

八、学法与教学用具:

1、学法:学生通过自学、思考、交流、讨论和概括,从而更好地完成本节课的教学目标 .

2、教学用具:投影仪 .

九、教学思路:

(一)创设情景,揭示课题

1、复习初中所学函数的概念,强调函数的模型化思想;

2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

(1)炮弹的射高与时间的变化关系问题;

(2)南极臭氧空洞面积与时间的变化关系问题;

(3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题

3、分析、归纳以上三个实例,它们有什么共同点。

4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

(二)研探新知

1、函数的有关概念

(1)函数的概念:

设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

记作: y=f(x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域(range).

注意:

① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

(2)构成函数的三要素是什么?

定义域、对应关系和值域

(3)区间的概念

①区间的分类:开区间、闭区间、半开半闭区间; ②无穷区间; ③区间的数轴表示.

通过三个已知的函数:y=ax+b(a≠0)

y=ax2+bx+c(a≠0) k y=(k≠0) x

比较描述性定义和集合,与对应语言刻画的定义,谈谈体会。

归纳总结

(4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

(三)质疑答辩,排难解惑,发展思维。

1、如何求函数的定义域

例1:已知函数f (x) = x?3+1 x?2(1)求函数的定义域;

2(2)求f(-3),f ()的值; 3(3)当a>0时,求f(a),f(a-1)的值.

分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式. 解:略

例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域. 80?2x分析:由题意知,另一边长为,且边长为正数,所以0<x<40. 280?2x所以s=?x = (40-x)x(0<x<40) 2

引导学生小结几类函数的定义域:

(1)如果f(x)是整式,那么函数的定义域是实数集R .

(2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合 .

(3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.

(4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)

(5)满足实际问题有意义.

巩固练习:课本P22第1

2、如何判断两个函数是否为同一函数

例3、下列函数中哪个与函数y=x相等?

(1)y = (x)2 ; (2)y = (x) ; 3

(3)y =x2

分析: x2; (4)y= x

1 构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和○

对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

2 两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自○

变量和函数值的字母无关。

解:(略)

课本P21例2

(四)巩固深化,反馈矫正:

(1)课本P22第2题

(2)判断下列函数f(x)与g(x)是否表示同一个函数,说明理由? ① f ( x ) = (x -1) 0;g ( x ) = 1

② f ( x ) = x; g ( x ) = x2

③ f ( x ) = x 2;f ( x ) = (x + 1) 2

④ f ( x ) = | x | ;g ( x ) =

(3)求下列函数的定义域

① f(x)?x2 1 x?|x|

② f(x)?1

1?x

③ f(x) = x?1+1 2?x

④ f(x) = x?4 x?2

1 ⑤

f(x)? (五)归纳小结

1. 从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;

2. 初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念。

(六)布置作业

1. 课本P28 习题1.2(A组) 第1—7题 (B组)第1题

2. 举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系。

篇三:教师资格证试讲高中数学教案二

教案二

(人教版必修一 第一单元 课时2:集合间的基本关系)

一、题目:集合间的基本关系

二、教学时间:45分钟

三、授课人数:

四、课时:1课时

五、课型:

六、教学目标:

1.知识与技能

(1)了解集合之间包含与相等的含义,能识别给定集合的子集.

(2)理解子集、真子集的概念.

(3)能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用.

2. 过程与方法

让学生通过观察身边的实例,发现集合间的基本关系,体验其现实意义.

3. 情感.态度与价值观

(1)树立数形结合的思想.

(2)体会类比对发现新结论的作用.

七、教学重点、难点:

重点:集合间的包含与相等关系,子集与真子集的概念.

难点:难点是属于关系与包含关系的区别.

八、学法与教学用具:

1.学法:让学生通过观察.类比.思考.交流.讨论,发现集合间的基本关系.

2.学用具:投影仪.

九、教学思路:

(—)创设情景,揭示课题

问题l:实数有相等.大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢?

让学生自由发言,教师不要急于做出判断。而是继续引导学生;欲知谁正确,让我们一起来观察.研探.

(二)研探新知

投影问题2:观察下面几个例子,你能发现两个集合间有什么关系了吗?

(1)A?{1,2,3},B?{1,2,3,4,5};

理科组 组?高中数学 NO. 姓名: 第 1 页

(2)设A为国兴中学高一(3)班男生的全体组成的集合,B为这个班学生的全体组成的集合;

(3)设C?{x|x是两条边相等的三角形},D?{x|x是等腰三角形};

(4)E?{2,4,6},F?{6,4,2}.

组织学生充分讨论.交流,使学生发现两个集合所含元素范围存在各种关系,从而类比得出两个集合之间的关系:

①一般地,对于两个集合A,B,如果集合A中任意一个元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为B的子集.

记作:A?B(或B?A)

读作:A含于B(或B包含A).

②如果两个集合所含的元素完全相同,那么我们称这两个集合相等.

教师引导学生类比表示集合间关系的符号与表示两个实数大小关系的等号之间有什么类似之处,强化学生对符号所表示意义的理解。并指出:为了直观地表示集合间的关系,我们常用平面上封闭曲线的内部代表集合,这种图称为Venn图。如图l和图2分别是表示问题2中实例1和实例4的Venn图.

图1图2

投影问题3:与实数中的结论“若a?b,且b?a,则a?b”相类比,在集合中,你能得出什么结论?

教师引导学生通过类比,思考得出结论: 若A?B,且B?A,则A?B.((来自于:www.hN1C.coM 唯才 教育 网:教师资格证高中数学试讲教案)

问题4:请同学们举出几个具有包含关系.相等关系的集合实例,并用Venn图表示.

学生主动发言,教师给予评价.

(三)学生自主学习,阅读理解

然后教师引导学生阅读教材第7页中的相关内容,并思考回答下例问题:

(1)集合A是集合B的真子集的含义是什么?什么叫空集?

(2)集合A是集合B的真子集与集合A是集合B的子集之间有什么区别?

(3)0,{0}与?三者之间有什么关系?

(4)包含关系{a}?A与属于关系a?A正义有什么区别?试结合实例作出解释.

(5)空集是任何集合的子集吗?空集是任何集合的真子集吗?

理科组 组?高中数学 NO. 姓名: 第 2 页

(6)能否说任何一人集合是它本身的子集,即A?A?

(7)对于集合A,B,C,D,如果A?B,B?C,那么集合A与C有什么关系? 教师巡视指导,解答学生在自主学习中遇到的困惑过程,然后让学生发表对上述问题看法.

(四)巩固深化,发展思维

1. 学生在教师的引导启发下完成下列两道例题:

例1.某工厂生产的产品在质量和长度上都合格时,该产品才合格。若用A表示合格产品,B表示质量合格的产品的集合,C表示长度合格的产品的集合.则下列包含关系哪些成立?

A?B,B?A,A?C,C?A

试用Venn图表示这三个集合的关系。

例2 写出集合{0,1,2)的所有子集,并指出哪些是它的真子集.

2.学生做教材第8页的练习第l~3题,教师及时检查反馈。强调能确定是真子集关系的最好写真子集,而不写子集.

(五)归纳整理,整体认识

1.请学生回顾本节课所学过的知识内容有建些,所涉及到的主要数学思想方法又哪些.

2. 在本节课的学习过程中,还有那些不太明白的地方,请向老师提出.

(六)布置作业

1. 第13页习题 1.1A组第5题.

理科组 组?高中数学 NO. 姓名: 第 3 页